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Abstract—In this letter, we propose the Rao test as a simpler
alternative to the generalized likelihood ratio test (GLRT) for
multisensor fusion. We consider sensors observing an unknown
deterministic parameter with symmetric and unimodal noise. A
decision fusion center (DFC) receives quantized sensor observa-
tions through error-prone binary symmetric channels and makes
a global decision. We analyze the optimal quantizer thresholds
and we study the performance of the Rao test in comparison to
the GLRT. Also, a theoretical comparison is made and asymptotic
performance is derived in a scenario with homogeneous sensors.
All the results are confirmed through simulations.

Index Terms—Decentralized detection, Rao test, threshold opti-
mization, wireless sensor networks (WSNs).

I. INTRODUCTION

D ECENTRALIZED detection with wireless sensor net-
works (WSNs) has received close attention by the

scientific community over the last decade. Each sensor, rather
than sending its observed measurements, typically sends one bit
of information about the estimated hypothesis to the decision
fusion center (DFC), which makes a global decision. Such an
approach is generally employed in order to satisfy stringent
constraints on bandwidth and energy. In this context the optimal
test (under Bayesian and Neyman-Pearson frameworks) at each
sensor is well known to be a one-bit quantization of the local
likelihood-ratio test (LRT). Unfortunately in most cases, due
to a lack of signal knowledge, it is not possible to compute the
local LRT at the generic sensor. Also, even when the sensors
can compute their local LRT, the search for local quantization
thresholds is well known to be exponentially complex [1], [2].
In such situations the raw measurement is directly quantized
into a single bit of information; the DFC is then in charge of
solving a composite hypothesis test.
Some simple approaches have been based on the counting

rule or channel-aware statistics, which neglect the dependence
with respect to (w.r.t.) the unknown signal [3]–[6]. On the other
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hand, in some particular scenarios the uniformly most powerful
test is independent of the unknown parameters under the alter-
nate hypothesis, which then do not need to be estimated [7].
Nonetheless, typically the fusion rule employed at the DFC is
based on the generalized LRT (GLRT). GLRT-based fusion of
quantized data was studied in [8], [9], for detecting a source
with unknown location and fusing conditionally dependent de-
cisions, respectively. Recently in [10] the GLRT has been used
to detect an unknown deterministic signal (in a decentralized
fashion with quantized measurements and noisy communica-
tion channels of identical quality) and an asymptotically op-
timal threshold choice for the quantizer has been derived in the
non-homogeneous sensor case (i.e. an additive Gaussian obser-
vation model with unequal variances).
The contributions of this letter are summarized hereinafter.

We study the problem in [10] and we propose the Rao test as a
computationally simpler alternative to the GLRT, since it does
not require any estimation procedure; its closed form is obtained
in the more general case of zero-mean noise with symmetric and
unimodal pdf and non-identical bit-error probabilities (BEPs)
on the communication channels. Also, we discuss the optimal
choice of quantizer threshold for some pdfs of interest. Further-
more, the Rao test is compared to the GLRT through simulations
showing that, in addition to sharing the same asymptotic distri-
bution, it achieves practically the same performance for a finite
number of sensors. This result becomes in fact theoretical coin-
cidence in a scenario with homogeneous sensors; for the latter
scenario a tighter asymptotic distribution of both tests is derived.
The letter is organized as follows: Section II introduces the

model; in Section III we derive the Rao test and the corre-
sponding optimal thresholds; in Section IV the GLR and Rao
tests are compared analytically in a homogeneous scenario,
while in Section V we confirm the results through simulations;
in Section VI we draw some conclusions.

II. PROBLEM STATEMENT

The system model is described1 as follows. We consider a bi-
nary hypothesis testing problem in which a collection of sensors

collaborate to detect the presence of an

1Notation—Lower-case bold letters denote vectors, with being the th
element of a; upper-case calligraphic letters, e.g. , denote finite sets; ,

and denote expectation, variance and transpose, respectively;
and are used to denote probability mass functions (pmf) and probability
density functions (pdf), respectively, while and their corresponding
conditional counterparts; denotes a Gaussian pdf with mean and
variance ; (resp. ) denotes a chi-square (resp. a non-central chi-
square) pdf with degrees of freedom (resp. and non-centrality parameter );

denotes a uniform pdf with support ; denotes a Laplace
pdf with mean and scale parameter ; the symbols and mean “distributed
as” and “asymptotically distributed as”.
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unknown deterministic parameter . The problem can be
summarized as follows:

,
;

(1)

where denotes the th sensor measurement,
is a known observation coefficient and denotes the
noise random variable (RV) with and unimodal
symmetric pdf,2 denoted with . Furthermore, the RVs
are assumed mutually independent. It is worth noting that (1)
refers to a two-sided test [11], where corresponds to

(in our case ).
Also, to meet stringent bandwidth and power budgets in

WSNs, the th sensor quantizes3 into one bit of information,
that is , , with denoting the
Heaviside (unit) step function and the quantizer threshold.
The quantized measurement is sent over a binary symmetric
channel (BSC) and the DFC observes a (communication)
error-prone , that is with probability
and with probability , which we collect as

. Here denotes the BEP of th link. The
problem here is the derivation of a (computationally) simple
test on the basis of and the quantizer design for each sensor
(i.e. an optimized , ).

III. RAO TEST

A. Test Derivation

A common approach to detection in composite hypothesis
testing problems is given by the GLRT, which has been derived
and studied in [10] for the model under investigation and whose
expression is:

(2)

where denotes the likelihood as a function of , is

the maximum likelihood (ML) estimate under (i.e.
) and is the threshold. It is clear from (2)

that requires the solution to an optimization problem; this
increases the computational complexity of its implementation.
However, in the special case it was shown in
[12] that ML estimation is a convex problem and thus it can
be efficiently solved with local-optimization routines. Unfortu-

2Noteworthy examples of such pdfs are the Gaussian, Laplace, Cauchy and
generalized Gaussian distributions with zero mean [11].
3We restrict our attention to deterministic quantizers for simplicity; an alter-

native is the use of stochastic quantizers, however their analysis falls beyond
the scope of this letter.

nately a closed form for is not available even under such an
assumption.
As such, we pursue the derivation of the Rao test [11], which

for the scalar case is given implicitly as:

(3)

where is the Fisher information (FI), i.e.
evaluated at . The motivation of

our choice is the extreme simplicity of the test implementation
(since is not required, cf. (3)), but with the same weak-signal
asymptotic performance as the GLRT [11].
In order to obtain explicitly, we expand as:

(4)

where , with denoting the com-
plementary cumulative distribution function of . On the other
hand, is given in closed form [10] as:

(5)

Combining (4) and (5) we obtain in closed form, as shown
in (6) at the bottom of the page. It is apparent that (as well
as ) is a function of , , which can be optimized to
achieve (asymptotically) optimal performance. (See equation at
bottom of page)

B. Quantizer Design With Asymptotic Performance Analysis

We know from theory that (as well as ), is asymptoti-
cally (when the signal is weak4) distributed as follows [11]:

under
under

(7)

where the non-centrality parameter is given by:

(8)

4That is for some constant [11].

(6)
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Fig. 1. Effect of on when
; , and

.

with being the true value under . Clearly the larger ,
the better the GLRT and Rao tests will perform. Also, as shown
in [10], is a function of , ; therefore we choose ,

, in order to maximize , that is

(9)

which can be decoupled into the following set of independent
threshold design problems:

(10)

where . It is
known from quantized estimation literature [13], [14] that
many unimodal and symmetric ’s with

lead to (independent of
); such examples are the Gaussian, Laplace, Cauchy

and the widely used generalized normal distribution, that
is , only when

; on the other hand when , becomes
bimodal (since it is symmetric) as shown in Fig. 1. However
the effect of a non-ideal BSC smoothes the gain achieved by
and thus is still a good (sub-optimal) choice. Substi-

tuting , in (6), leads to the following simplified
expression for threshold-optimized Rao test (denoted with ):

(11)
which is considerably simpler than the GLRT, as it obviates so-
lution of an optimization problem (which depends on ).
Furthermore, the corresponding optimized non-centrality pa-
rameter, denoted with , is given by:

(12)

Remarks: In the case of BSCs of the same quality (i.e.
, ) we simply get , where

represents in the ideal
BSC case ( , ). This result generalizes the one in
[10], by stating that the loss due to non-ideal communications
is asymptotically independent of , .

IV. COMPARISON IN HOMOGENEOUS SCENARIO

In this section we study the simplified scenario ,
, , , to get an intuitive inter-

pretation of the two threshold-optimized tests . Based
on these assumptions, the statistics in (2) and (11) reduce to:

(13)

(14)

(15)

(16)

where , and .
Here represents the empirical distribution of the i.i.d. bi-
nary source and and
denote the Kullback-Leibler (KL) and total variation distance
(TVD) divergences, respectively [15]. It is worth noticing that
in (14) we exploited the closed form of

(see [12] for a similar result).
Exploiting KL5 and TVD divergences properties it can be

shown that both (14) and (16) are monotone (increasing) func-
tions of and therefore represent equivalent tests in a
homogeneous sensor scenario, meaning their performances co-
incide also for a finite number of sensors.
Finally, we derive a tighter asymptotic form of the conditional

pdf (not requiring the weak-signal assumption) of both the tests
in this scenario with the help of the central limit theorem (CLT)
[15]. Without loss of generality we focus hereinafter on
(since has the same performance). For this purpose, we de-

fine the RV and we consider the
asymptotic form of , , which according to
the CLT is given as by:

(17)

where ,

and . From inspection
of (15), it can be verified that holds, which can be
exploited to obtain closed form performance expressions.

V. NUMERICAL RESULTS

In this section we compare the Rao test to the GLRT. We
evaluate the performance in terms of system false alarm and
detection probabilities, defined as and

, respectively, where is the statistic
employed at the DFC.We also define the th sensor observation
signal-to-noise ratio (SNR) as .
In Fig. 2 we illustrate vs in a WSN with

sensors where , , (but known
at the DFC), and two noise pdfs: (i) and (ii)

, such that . We consider four com-
binations corresponding to and

, where we have denoted (in our case
) as the average observation SNR. The figures

are based on Monte Carlo runs. First, it is apparent that the

5Since it is increasing when and symmetric around .
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Fig. 2. vs ; WSN with sensors, , ,
for Gaussian and Laplace noise; , .

Fig. 3. vs ; . Setup: ; ,
( ), , homogeneous scenario. Square and
bullet markers refer to GLRT and Rao test, respectively; solid and dash-dot
lines refer to weak-signal and CLT-based asymptotic pdfs, respectively.

performances of the GLR and the Rao tests are practically the
same for all the considered scenarios; however the implementa-
tion of the Rao test is much simpler than that of the GLRT. Also,
the difference in performances under Laplacian and Gaussian
noises is significant only at , while at the
curves almost overlap. This is explained since when is low the
signal is more concentrated around zero. Then the imbalance in
the binary pmf observed at the output of each quantizer is higher
when .
In Fig. 3 we show as a function of , assuming
. We consider , and two noise pdfs: (i)

and (ii) , such that (thus
), . Also, we consider , thus

determining a homogeneous scenario. First, Monte Carlo simu-
lations confirm the theoretical coincidence between the Rao test
(bullet markers) and the GLRT (square markers). Secondly, it
is apparent that the CLT-based performance expressions (dash-
dot) are as accurate as those based on the weak-signal assump-
tion (solid lines) for Gaussian noise, while in the Laplacian Case
the weak-signal distribution is far from being representative of
the distribution. Interestingly, when , in the Lapla-
cian case coincides with the non-centrality parameter achieved
by a GLRT (or Rao test) based on the raw , , given
by , that is (12) does not predict the
loss due to quantization. On the other hand, by exploiting the
CLT-based performance in (17), we can compare with
the modified deflection coefficient of the asymptotic problem

given by (17) , which for the Laplacian noise is
given by

; thus for this problem we have
, which predicts the performance loss well.

VI. CONCLUSIONS

We studied the Rao test for decentralized detection with
an unknown deterministic signal as an attractive alternative
to GLRT for a general model with quantized measurements,
zero-mean, unimodal and symmetric noise (pdf), non-ideal
and non-identical BSCs. The asymptotically optimal sensor
thresholds were shown to be zero for many pdfs of interest
and a fair choice in other scenarios; this result was exploited
to simplify further the Rao test. Also, it was shown through
simulations that the Rao test, in addition to being asymptot-
ically equivalent to the GLRT, achieves practically the same
performance in the finite number of sensors case; for the case
of homogeneous sensors a theoretical coincidence of the two
tests was established. In such a scenario a general asymptotic
performance were derived based on the CLT and not requiring
the weak-signal assumption. These latter were shown to be
crucial in performance analysis with peaked noise pdfs.

REFERENCES
[1] J. N. Tsitsiklis, “Decentralized detection,” Adv. Statist. Signal Process.,

vol. 2, no. 2, pp. 297–344, 1993.
[2] R. Viswanathan and P. K. Varshney, “Distributed detection with mul-

tiple sensors—Part I: Fundamentals,” Proc. IEEE, vol. 85, no. 1, pp.
54–63, Jan. 1997.

[3] V. A. Aalo and R. Viswanathan, “Multilevel quantisation and fusion
scheme for the decentralised detection of an unknown signal,” Proc.
Inst. Elect. Eng., Radar, Sonar Navig., vol. 141, no. 1, pp. 37–44, Feb.
1994.

[4] B. Chen, R. Jiang, T. Kasetkasem, and P. K. Varshney, “Channel
aware decision fusion in wireless sensor networks,” IEEE Trans.
Signal Process., vol. 52, no. 12, pp. 3454–3458, Dec. 2004.

[5] R. Niu and P. K. Varshney, “Performance analysis of distributed de-
tection in a random sensor field,” IEEE Trans. Signal Process., vol. 56,
no. 1, pp. 339–349, Jan. 2008.

[6] D. Ciuonzo, G. Romano, and P. Salvo Rossi, “Channel-aware decision
fusion in distributed MIMO wireless sensor networks: Decode-and-
fuse vs. decode-then-fuse,” IEEE Trans. Wireless Commun., vol. 11,
no. 8, pp. 2976–2985, Aug. 2012.

[7] D. Ciuonzo, G. Romano, and P. Salvo Rossi, “Optimality of received
energy in decision fusion over Rayleigh fading diversity MAC with
non-identical sensors,” IEEE Trans. Signal Process., vol. 61, no. 1, pp.
22–27, Jan. 2013.

[8] R. Niu and P. K. Varshney, “Joint detection and localization in sensor
networks based on local decisions,” inFortieth Asilomar Conf. Signals,
Systems and Computers, 2006, pp. 525–529.

[9] S. G. Iyengar, R. Niu, and P. K. Varshney, “Fusing dependent decisions
for hypothesis testing with heterogeneous sensors,” IEEE Trans. Signal
Process., vol. 60, no. 9, pp. 4888–4897, Sep. 2012.

[10] J. Fang, Y. Liu, H. Li, and S. Li, “One-bit quantizer design for mul-
tisensor GLRT fusion,” IEEE Signal Process. Lett., vol. 20, no. 3, pp.
257–260, Mar. 2013.

[11] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume 2:
Detection Theory. Upper Saddle River, NJ, USA: Prentice-Hall PTR,
Jan. 1998.

[12] A. Ribeiro and G. B. Giannakis, “Bandwidth-constrained distributed
estimation for wireless sensor networks—Part I: Gaussian case,” IEEE
Trans. Signal Process., vol. 54, no. 3, pp. 1131–1143, Mar. 2006.

[13] H. C. Papadopoulos, G. W. Wornell, and A. V. Oppenheim, “Sequen-
tial signal encoding from noisy measurements using quantizers with
dynamic bias control,” IEEE Trans. Inf. Theory, vol. 47, no. 3, pp.
978–1002, Mar. 2001.

[14] D. Rousseau, G. V. Anand, and F. Chapeau-Blondeau, “Nonlinear es-
timation from quantized signals: Quantizer optimization and stochastic
resonance,” in Proc. 3rd Int. Symp. Physics in Signal and Image Pro-
cessing, 2003, pp. 89–92.

[15] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Hoboken, NJ, USA: Wiley-Interscience, 2006.


